Geomagnetic Observations at Syowa Station in the Antarctic

Must read

The US Army Funds Project for Ground Vehicle Navigation in GPS-denied Terrain

The U.S. Army Research Lab awarded the University of Central Florida a $4.5 million grant to develop a smart, computer vision-based navigation system for...

Ford Will Use Boston Dynamics Robots As Mobile Lidar To Map Car Assembly Plants

Ford is going to employ two of Boston Dynamics’ “Spot” robots, which are four-legged, dog-like walking robots that weigh roughly 70 lbs each, to...

ArcGIS Pro Book Updated for Version 2.8

The ArcGIS Pro book on the use of the ArcGIS Pro application developed by ESRI has been updated for the latest version 2.8. This fourth...

Cursir NAVAID Drones For Flight Inspections Of Navigation Aids

NAVAID Calibration Drone by Cursir helped to speed up the flight check of the landing system of the Ulyanovsk airport. Last year, by order of...
Nursinem Handan ŞAHAN
2018 yılında Yıldız Teknik Üniversitesi Harita Mühendisliği bölümünü onur öğrencisi olarak tamamladı. Lisans eğitimi sırasında Erasmus+ programıyla Varşova Teknoloji Üniversitesinde öğrenim gördü. Halihazırda öğrenimine İstanbul Teknik Üniversitesi Coğrafi Bilgi Teknolojileri bölümünde devam etmekte.

Solar activities, such as CME(Coronal Mass Ejection), cause geomagnetic storms that are a temporary disturbance of the Earth’s magnetosphere. Geomagnetic storms can affect GPS positioning, radio communication, and power transmission system.

Solar explosions also emit radiation, which can affect satellite failures, radiation exposure to aircraft crew, and space activity. Therefore, it is important to understand space weather phenomena and their impact on the Earth.

Space weather research by continuous observation of cosmic rays on the ground is mainly conducted using observation data from neutron monitors and multi-directional muon detectors. Since the phenomenon of space weather is on a short-term, days-long scale, it is effective to investigate changes in the flow of cosmic rays for several hours, which requires a total sky monitor of cosmic rays.

In the muon detector, the global muon detector network (GMDN) has been observing space weather phenomena since 2006, and in the neutron monitor, the Spaceship Earth project constitutes a similar observation network and the role of the all-sky monitor. Until now, observations by neutron monitors and muon detectors have been performed independently, and progress has been made in space weather research.

In February 2018, Professor Chihiro Kato of Shinshu University took the lead in acquiring simultaneous observations of the neutron monitor and muon detector at Syowa Station in the Antarctic in order to acquire bridging data of observations by the neutron monitor and muon detector.

The earth’s atmosphere is daily being bombarded by Cosmic Rays, consisting of high-energy particles that travel from the sun or more distant places in the universe. The hits create showers of secondary particles, muons for example, that we can detect with our muon detector!

In the polar regions, unlike low latitude regions on the earth, it is possible to observe cosmic rays coming from the same direction with a neutron monitor and a muon detector due to the weaker deflection by the geomagnetism. This is the reason why Syowa Station was selected as the observation point.

Syowa muon detector and neutron monitor observed small fluctuation in CR count like a Forbush decrease on 2018.8. The research group including researchers from Shinshu University and the National Polar Research Institute found curious cosmic-ray density variation on this event by analyzing GMDN data.

On the CME event, a huge amount of coronal material released with a bundle of the solar magnetic field, called Magnetic Flux Rope (MFR), into the interplanetary space. MFR moves through interplanetary space as expanding. CR density is low inside of it because it is originally coronal material. When the Earth enters the MFR, CR counts on the ground decreases. This is called Forbush Decrease.

Normally, when MFR arrives on Earth, CR density observed at the ground level decreases rapidly, and then turns to increase recovering to the original level while the Earth is in the MFR. On this event, however, the CR exceeds the original level before the Earth exits the MFR.

This event attracts interest from researchers because,

  1. The solar activity is currently near the minimum and the scale of the event itself is small
  2. It causes a disproportionately large geomagnetic storm
  3. There is high-speed solar wind catching up the MFR expected to interact with it.

By analysis of the GMDN and solar plasma data, it is concluded that the high-speed solar wind causes the unusual enhancement of the CR density by compressing the rear part of the MFR locally.

Cosmic ray observation data is closely related not only to space weather research but also to atmospheric phenomena such as sudden stratospheric temperature rise and is expected to be used in a wide range of fields in the future.

Source: Coronal mass ejections and cosmic ray observations at Syowa Station in the Antarctic, Muon detector

More articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisement -

Latest article

The US Army Funds Project for Ground Vehicle Navigation in GPS-denied Terrain

The U.S. Army Research Lab awarded the University of Central Florida a $4.5 million grant to develop a smart, computer vision-based navigation system for...

Ford Will Use Boston Dynamics Robots As Mobile Lidar To Map Car Assembly Plants

Ford is going to employ two of Boston Dynamics’ “Spot” robots, which are four-legged, dog-like walking robots that weigh roughly 70 lbs each, to...

ArcGIS Pro Book Updated for Version 2.8

The ArcGIS Pro book on the use of the ArcGIS Pro application developed by ESRI has been updated for the latest version 2.8. This fourth...

Cursir NAVAID Drones For Flight Inspections Of Navigation Aids

NAVAID Calibration Drone by Cursir helped to speed up the flight check of the landing system of the Ulyanovsk airport. Last year, by order of...

5 Ways to Use GIS in Smart City Projects

The successful implementation of a smart city project requires the development of a digital system that can manage and visualise the geospatial data in...