How does Google Maps predict traffic?

Must read

BIM Planning And Viewing: 3D Pluraview And ELITECAD Make It Possible

The cooperation between Schneider Digital and XEOMETRIC / ELITECAD optimally combines the strength of three-dimensional planning capabilities and stereoscopic graphic output. 3D modeling and...

Preventing Violence With Geospatial Big Data

Violence, whether it is focused on individuals such as crime or at larger scales such as war, seems to be almost inevitable in our...

Sentinel-2 Collection Is Available For Digital Twin Applications

Horizon 2020 Global Earth Monitor project and the European Space Agency’s Digital Twin activities scientists Matic Lubej and Grega Milcinski create a data collection for...

Scientists Map Hidden Continent Sank 23 Million Years Ago

Scientists have been exploring the seafloor off of Australia to unravel the mystery of Zealandia, the 'lost' eighth continent that sank into the sea...
Ali Berke Dinç
Zonguldak Bülent Ecevit Üniversitesi Geomatik Mühendisliği Bölümü 3. sınıf öğrencisi.

Predicting traffic conditions on the roads and determining the best routes for a journey is an incredibly complex task. And yet, Google Maps does it in a matter of seconds – every single time.

So, how does the navigation app figure out whether the traffic along your route is heavy or light or what your estimated time of arrival would be?

Recommended Article: Google Maps became much more accurate and “colorful”

Getting live traffic estimates — whether or not a traffic jam will affect your drive right now – is pretty straightforward. With more than 1 billion kilometers driven with Google Maps in more than 220 countries and territories around the globe, aggregate location data helps to understand the current traffic conditions on the world’s roads.

But this information does not account for what traffic will look like 10, 20, or even 50 minutes into your journey. And this is where advanced machine learning techniques come into play. To predict what the future is going to look like, Google Maps takes a peep into the past. Analyzing historical traffic patterns over time, Google has learned what road conditions could look like at any given point of the day. “For example, one pattern may show that the 280 freeway in Northern California typically has vehicles traveling at a speed of 65mph between 6-7 am, but only at 15-20mph in the late afternoon,” explains Johann Lau, Product Manager, Google Maps.

A combination of these historical traffic patterns and live traffic conditions allow Google Maps’ machine learning algorithms to predict whether or not you’ll be affected by a slowdown that may not have even started yet!

It must be noted that Google has recently updated its predictive traffic models to accommodate the dramatic shift in driving patterns since the start of the COVID-19 pandemic. These agile models now automatically prioritize historical traffic patterns from the last two to four weeks and deprioritize patterns from any time before that.

Route Selection

While traffic prediction is a key consideration in determining recommended routes, Google Maps also looks at several other factors, such as road quality. “Is the road paved or unpaved, or covered in gravel, dirt, or mud? Elements like these can make a road difficult to drive down, and we’re less likely to recommend this road as part of your route. We also look at the size and directness of a road—driving down a highway is often more efficient than taking a smaller road with multiple stops,” says Lau.

Other sources of information include authoritative data from local governments (speed limits, tolls, restricted movement, etc.) and real-time feedback from Google Maps users (vehicle breakdown, lane closure, construction work, etc.). These sources also help to understand when road conditions may change unexpectedly due to mudslides, snowstorms, or other forces of nature.

“It’s not Perfect!”

Source: Geoawesomeness

More articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisement -

Latest article

BIM Planning And Viewing: 3D Pluraview And ELITECAD Make It Possible

The cooperation between Schneider Digital and XEOMETRIC / ELITECAD optimally combines the strength of three-dimensional planning capabilities and stereoscopic graphic output. 3D modeling and...

Preventing Violence With Geospatial Big Data

Violence, whether it is focused on individuals such as crime or at larger scales such as war, seems to be almost inevitable in our...

Sentinel-2 Collection Is Available For Digital Twin Applications

Horizon 2020 Global Earth Monitor project and the European Space Agency’s Digital Twin activities scientists Matic Lubej and Grega Milcinski create a data collection for...

Scientists Map Hidden Continent Sank 23 Million Years Ago

Scientists have been exploring the seafloor off of Australia to unravel the mystery of Zealandia, the 'lost' eighth continent that sank into the sea...

Smart Cities Together With Smart Street Lights

Cities are rushing to replace their legacy street lights with "smart LED fixtures" that could one day be able to find you a parking...